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Abstract 
Survival analysis is a statistical technique which can be used for the analysis of time to event data. The 
purpose of this study is to provide a specific application of survival analysis in the area of credit risk. 
The aim of this paper is to analyse the time to default and explore the effect of selected variables on time 
to corporate failures. Survival analysis in this study is based on modelling the time interval between 
foundation of the company and its bankruptcy. In this paper, two survival models are estimated by the 
Cox proportional hazard model, including a model with quadratic terms. The overall results of the 
analysis suggest there are certain financial variables with a significant effect on survivorship of Czech 
construction firms. The empirical results provide evidence that selected indicators of return, coverage, 
turnover and liquidity can be considered as key variables in the hazard of corporate bankruptcy. Thus, 
the main contribution of this paper is in examining the survivor data of the Czech construction 
companies, and in identifying variables with a significant effect on time to their corporate failures. 
 
Keywords: Cox proportional model, duration, hazard rate, failure, survival analysis  
JEL codes: G30, G32, G33 
 
1. Introduction  
 

The paper aims at the analysis of survival data of Czech construction companies, where the time 
between the foundation of the company and its failure is modelled by the means of survival analysis. 
The main objective of this study is to use the Cox proportional hazards models and to estimate the 
survival and hazard functions. The failure of companies in this study is determined by the occurrence of 
a bankruptcy during the observed time span. The bankruptcy of companies is usually the basis of credit 
score models, which are statistically derived models of the prediction of credit risk. Among all the 
studies on scoring models, we can mention the study by Altman (1968) and the model known as the 
Altman´s model or Z- score model. The approach of survival analysis can be seen as an alternative way 
to examine the survivor data. For example Kelly et al. (2015) focus on corporate liquidations in Ireland, 
Lonzada et al. (2014) model time to default on a personal loan portfolio. As they state in their article, 
due to the continuous monitoring of risk over time, survival models are being proposed in financial risk 
management as alternative tools. Their empirical study is illustrated on a credit data from a Brazilian 
commercial bank and their results show that the attention should be paid to continuous checking of the 
validity of requirements for use of the available models. Among other studies, Agarwal and Audretsch 
(2001) focus on the effect of the size of a time on its survival. In their study, they find that smaller 
companies face a lower likelihood of survival when compared to larger companies. However, they 
suggest that general pronouncements are hazardous, because the role of the size changes over the 
industry cycle and with the technological demands of that industry. 

In this paper, the empirical analysis of survival time on corporate data is provided. For the 
purposes of the analysis of time to event, it is suggested to use the regression models that are appropriate 
for survivor data (Hosmer et al., 2008). As Hosmer et al. (2008, p. 3) state, the most important 
differences between the outcome variables modelled via linear and logistic regression analyses and the 
time variable is the fact that we may  only observe the survival time partially. If the time until the 
occurrence of the event is not important, the event can be analysed as a binary outcome using the logistic 
regression model (Harrell, 2010, p. 389). As Harrell (2010) points out, survival analysis is used to 
analyse the data in which the time until event is of interest. The input variable is the time until the event, 
or duration time. The survival analysis allows the response to be incompletely determined for some 
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subjects, perhaps we are not able to follow all observations in the dataset. For example, some companies 
are still alive after the observation time, or they might be lost to follow-up. As we face the problem of 
incomplete information, we need to analyse the data using the specialised survival techniques. The 
analysis involves censoring mechanism, when we define the censored and uncensored observations. For 
example, Hosmer et al. (2008, p. 18) define a censored observation as one whose value is incomplete 
due to random factors for each subject. If no responses are censored, standard regression models for 
continuous responses could be used to analyse the failure times (Harrell, 2010). Based on the 
assumptions about the distribution of failure times, we can use parametric, semiparametric and 
nonparametric modelling. In this paper, the focus is paid to the application of semiparametric methods 
such as Cox proportional hazards model. The main principles of this approach and used methodology 
are described in the chapter two of this paper. The empirical analysis and the examination of the 
construction sector are provided in the chapter three, where the multivariable survivor model is 
estimated by the means of Cox model. The attention is paid to the interpretation of the hazard ratios and 
practical implications of the model. Finally, overall results and recommendations are summarized in the 
conclusion of this article.    

 
2. Methodology description 
 
 The primary objective of this paper is to use survival analysis on the corporate data to estimate 
the survival and hazard functions. Survival analysis is an approach that allows working with censored 
data and modelling the time to an event, such as a corporate failure. To model the time to event, two 
time points must be clearly defined, the beginning point and an endpoint when the event of interest 
occurs. Then, the survival time is the distance on the time scale between these two points (Hosmer et 
al., 2008). When applying the survival analysis, we deal with the process of censoring the data. It comes 
from the fact that we can face the problem of incomplete observation of time. It usually occurs when the 
observation begins at the defined time and terminates before the outcome of interest is observed. The 
most common type of censoring is right censoring, because the incomplete observations occur in the 
right tail of the time axis. The estimated survival function incorporates all the information available, 
both uncensored (event times) and censored observations. In this chapter, the elementary terminology 
and relations of survival analysis are described. Firstly, the attention will be paid to survival and hazard 
functions, and then the Cox proportional model will be presented. 
 
2.1 Survival and Hazard Functions 

 
The survival function evaluated at time t can be considered as the probability that a subject will 

live for at least time t (Gourieroux and Jasiak, 2007). It takes values between 0 and 1 and is decreasing 
in t. At t = 0 the survival function is equal to 1 and decreases toward zero as t goes to infinity (Cleves et 
al., 2010).  

The term survival function, S, is given by  
 

)Pr()(1)( tTtFtS >=−= ,                                    (1) 
 
where T is a nonnegative random variable denoting the time to a failure event. As Cleves et al. (2010, 
p. 7) show, the survivor function is the reverse cumulative distribution of T: 
 

).Pr()( tTtF ≤=                                                                  (2)
  

Using the survival function, we can estimate the probability of surviving beyond time t. In other 
words, we can estimate the probability that there is no failure event prior to t.   

The density function f(t) can be obtained both from S(t) or F(t): 
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The hazard function or rate h(t) at time t can be explained as the probability that the company 
will default very shortly after reaching time t, provided that it reaches time t (Gourieroux and Jasiak, 
2007). Cleves et al. (2010) explain the hazard rate as the conditional failure rate or the intensity function. 
As they emphasize, the hazard rate represents the instantaneous rate of failure with 1/t units. Said 
differently, it is the probability that the failure event occurs in a given interval, conditional upon the 
subject having survived to the beginning of that interval, divided by the width of the interval (Cleves et 
al., 2010): 
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The hazard function can range from zero (no risk) to infinity (the certainty of failure at that 

instant) and can be decreasing, increasing, or constant, or it can even take on other different shapes.  
The relationship between the hazard and the survival function can be described as 
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Gourieroux and Jasiak (2007) use the duration dependence to describe the relationship between 

the exit rate and the time spent in a given state by a subject. It is determined by the form of the hazard 
function. For example, the positive duration dependence in a sequence of failure events occurring 
randomly in time means that the more time elapsed since the last failure event, the greater the probability 
of an instantaneous occurrence of another failure. There are three types of duration dependence: (i) 
negative, associated with decreasing hazard functions, (ii) positive, associated with increasing hazard 
functions, and (iii) there can be absence of duration dependence, when there is no relationship between 
the exit rate and the duration.  

 
2.2 Cox Proportional Hazards Model 

 
Analysis of survival data can be based on parametric, semiparametric and nonparametric 

modelling. While parametric models require assumptions about the distribution of failure times, 
semiparametric models are parametric in the sense that the effect of the covariates is assumed to take a 
certain form (Cleves et al., 2010). In other words, they are semiparametric models in terms that no 
parametric form of the survival function is specified, yet the effects of covariates are parametrized to 
modify the baseline survivor function. In general the baseline survival function is the function for which 
all covariates are equal to zero in a certain way. In the Cox model specifically, we assume that the 
covariates multiplicatively shift the baseline hazard function (Cleves et al., 2010).  The form of the Cox 
model can be formulated as 

 
),exp()()( 0 xthth xβx =             (6) 

 
where xβ are the regression coefficients and )(0 th is the baseline function. In this model, we do not make 
any assumptions about )(0 th , however at a cost of a loss in efficiency. As Hosmer et al. (2008) point 
out, the baseline hazard function can be seen as a generalization of the intercept or constant term found 
in parametric regression models. The Cox model (6) is the most used form of the hazard function which 
was first proposed by Cox in 1972. The term proportional hazards (PH) refers to the fact that the hazard 
functions are multiplicatively related (Hosmer et al., 2008, p. 70). The regression coefficients can be 
estimated by the partial maximum likelihood method, which is described for example by Gourieroux 
and Jasiak (2007, p. 99). Cleves et al. (2010) use the term relative hazard for )exp( xβx , and the log 
relative hazard, or risk score, for .xxβ   

To verify the specification of xxβ and an adequate parametrization of the model, we can use 
tests called tests of the proportional-hazard assumptions (P-H assumptions). In this study, the tests are 
based on the analysis of residuals. As to the fact that the proportional hazards model to censored survival 
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data is fit using the partial likelihood, the calculation of residuals differs from the usual regression 
models.  For this reason, various approaches have been developed for the purposes of Cox proportional 
model. The residuals used in this study are based Schoenfeld residuals, for more details see for example 
Hosmer et al. (2008), Cleves et al. (2010), Harrel (2010). Since the survival models estimate the time to 
event, the explained variation should be assessed after the development of the model.  The measures of 
explained variation for use with censored survival data differ from the traditional concept of variation 
using the index of determination. Roysten (2006) proposed a measure with the character of explained 
variation in proportional hazards models which can be used as an adjusted index of determination in PH 
models.  

 
3. Empirical Study and Model Estimation 
  
 The survival analysis in this paper is used on the data of selected Czech companies from the 
construction sector. For the purposes of the analysis, the data about the companies were extracted from 
the Bisnode Magnusweb database1 and from the government portal Justice.cz2. The sample comprises 
data of 4546 companies, including 665 failrures. For the purposes of the analysis, the dates of two types 
of events are essential: the date of company foundation (t=0) and the date of the bankruptcy (t =1).  The 
companies are observed during the period 1988 – 2015 and they were founded during the period 1988 
– 2005. The end of the study is March 15, 2015. If the company did not bankrupt until this date, or if 
the company was not registered in the database any more, it is assumed to be a censored observation. 
Otherwise, the observation is uncensored. Each record documents the time span of a particular company 
and 24 quantitative variables (financial analysis ratios of activity, profitability, liquidity and solvency 
observed at the end of the particular years).   

 
3.1 Cox Proportional Hazards Model Estimation 

 
The survival analysis in this paper is based on the Cox proportional hazards model and we 

analyze the impact of the selected variables on time to corporate failure. In the first step, the individual 
coefficients are estimated to determine variables with a significant impact on the hazard rate. There are 
various methods for the model development and the selection of influential variables. For example, 
Hosmer (2008) suggests purposeful or stepwise selection of covariates. Using the univariable analysis 
in this study, we can determine significant variables at the 20 percent level. The statistical significance 
is based on the Wald test of the null hypothesis, 0:0 =xH β versus 0:1 ≠xH β . Results show that there 
are seven significantly important covariates on time to failure (Table 1). 

 
Table 1: Univariable Survival Analysis   

Financial ratio Variable Coef. Std. error z P>|z| 95% confidence interval 

Logarithm of total 
assets 

lnta 0.25918 0.03572 7.26 0.000 0.18918 0.32918 

Return on assets roa -0.00126 0.00085 -1.48 0.140 -0.00292 0.00041 
Coverage of long-
term assets 

cla -0.012871 0.00108 -11.87 0.000 -0.01500 -0.01075 

Interest coverage ic -0.00005 0.00003 -1.85 0.064 -0.00011 3.13.10-6 
Total assets 
turnover 

ta_turn -0.17911 0.048851 -3.67 0.000 -0.27485 -0.08336 

Current ratio cr -0.00313 0.00128 -2.46 0.014 -0.00564 -0.00063 

Cash ratio cash -0.00341 0.00157 -2.17 0.030 -0.00650 -0.00033 
Source: author’s calculations  

 

                                                 
1 Bisnode Magnusweb [online database]. Available from: http://www.bisnode.cz/ [cit. 2015-03-15].  
2 Justice.cz [online]. Available from: https://or.justice.cz/ias/ui/rejstrik [cit. 2015-03-15]. 
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Using the univariable analysis, we can identify influential variables which can be used to fit a 
multivariable model in the next step. The final multivariable model contains five variables which are 
statistically significant at the level of 0.05 (Table 2). The overall significance of the model is tested by 
the log partial likelihood ratio test, where the value of the test is G = 207.63, and the G statistic follows 
chi-square distribution with 5 degrees of freedom. Since the p-value for the test is less than 0.000, at 
least one of the coefficients in the model is significantly associated with survival time.  As it is evident 
from the table (Table 2), all five variables are statistically significant at the level of significance of 0.05, 
based on the Wald statistic. Using the estimated coefficients, we can identify the relationship between 
each variable and survival time. It is evident that an increase in the following four variables roa, cla, 
ta_turn, cr decreases the hazard, while the hazard is increased by the increase in lnta. 

 
Table 2: Multivariable Survival Model  

Financial variable Variable Coef. Std. error z P>|z| 95% confidence interval 
Logarithm of total 
assets 

lnta 0.35148 0.04001 8.9 0.000 0.273072 0.42990 

Return on assets roa -0.38846 0.05030 -7.72 0.000 -0.48705 -0.28988 
Coverage of long-
term assets 

cla -0.01490 0.00125 -11.90 0.000 -0.01736 -0.01245 

Total assets 
turnover 

ta_turn -0.29249 0.06819 -4.30 0.000 -0.42581 -0.15918 

Current ratio cr -0.00356 0.00137 -2.60 0.009 -0.00624 -0.00088 
Source: author’s calculations 

 
To interpret the results, we can use the exponentiated individual coefficients that represent the 

ratio of the hazards for a 1-unit change in the corresponding covariate. The hazard ratios are shown in 
the table below (Table 3). 

 
Table 3: Hazard Ratios 

Financial variable lnta roa cla ta_turn cr 

Hazard ratio 1.42117 0.67810 0.98521 0.74640 0.99645 
Source: author’s calculations 

 
For example, a 1-unit increase in roa decreases the hazard by 32.2%. From the economic point 

of view, the results are consistent with theoretical assumptions. The higher the return on assets, the 
coverage of long-term assets, the turnover of total assets and the current liquidity ratio, the lower the 
hazard of bankruptcy. As can be seen, the final estimated model includes the ratios of profitability, 
activity and liquidity. The size of the company is another significantly important factor in the model, 
however with an opposite impact on the hazard. When transformed to the logarithm of total assets, the 
higher the variable, the higher the hazard rate. In conclusion, the model implies that larger companies 
face a higher probability to corporate failure. It is likely to be a specific attribute of the Czech 
construction sector and may be explained by the stage of industry life cycle, technological demands or 
other factors, such as suggested by Agarwal and Aaudretsch (2001).  

 
3.1.1 Survival and Hazard Functions Estimates 

 
The overall estimated survival function for the data is shown in Figure 1 (a). The estimated 

hazard function shows the probability that the failure event occurs in a given interval (kernel smoother 
is applied) and decreases with time. As we can see from the graph, Figure 1 (b), the hazard rates change 
meaning that the risk of failure is not constant over time.  
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Figure 1: Survival and Smoothed Hazard Functions Estimates  
 

        a) Survival function                      (b) Smoothed hazard function 

 
Source: author’s calculations 

 
3.1.2 Model Verification 

 
The assumption of proportional-hazards specification is based on the analysis of residuals. 

Based on the variable-by-variable tests and the combined test, the overall proportional-hazards (PH) 
assumption is not violated at the significance level of 0.05 (Table 4). 

 
Table 4: The Overall Test of the PH Assumptions  

Var rho chi2 df Prob>chi2 
lnta 0.03734 0.39 1 0.5331 
roa 0.01390 0.07 1 0.7980 
cla 0.22469 7.51 1 0.0062 

ta_turn 0.04069 0.51 1 0.4773 
cr 0.18835 0.13 1 0.7191 

Global 8.44 5 0.1338 
Source: author’s calculations 

  
The proportional-hazards assumption of individual covariates can be assessed by the use of 

graphs. The graphs of all covariates included in the model are shown in the following figure  
(Figure 2). The curves are roughly linear with a nonzero slope for all covariates which means there is 
no need of covariates transformation.  
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Figure 2: Tests of PH Assumptions 
 

(a) lnta                                (b) roa  

    
(c) cla                               (d) ta_turn      

   
             (e) cr 

 
Source: author’s calculations 

 
The explained variation of the model measured by the adjusted index of determination R2 equals 

0.368519 (SE = 0.032674). The greatest contribution to the explained variation is carried by covariates 
cla and lnta, followed by ta_turn, roa and cr.  

 
3.2 Cox Model Modification 

 
As to the previous results, the PH model contains five continuous variables cla, lnta, ta_turn, 

roa and cr. In the next step, we fit the model considering the quadratic effects of covariates. The final 
model contains two quadratic forms, qcla and qcr, in addition to the previous model in Chapter 3.1. We 
can see results in the following table (Table 5).  
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Table 5: Multivariable Survival Model with Quadratic Terms 
Financial variable Variable Coef. Std. error z P>|z| 95% confidence interval 

Logarithm of total 
assets 

lnta 0.382032 0.04007 9.53 0.000 0.30349 0.46057 

Return on assets roa -0.318292 0.048928 -6.51 0.000 -0.41419 -0.22240 
Coverage of long-
term assets 

cla -0.029276 0.004738 -6.18 0.000 -0.03856 -0.01999 

Q. Coverage of 
long-term assets 

qcla -0.00004 0.000014 -3.21 0.001 -0.00007 -0.00002 

Total assets 
turnover 

ta_turn -0.264507 0.06440 -4.11 0.000 -0.39073 -0.13829 

Current ratio cr -0.632771 0.103885 -6.09 0.000 -0.83638 -0.42916 

Q.Current ratio qcr -0.086747 0.029916 -2.90 0.004 -0.14538 -0.028113 
Source: author’s calculations 

 
As can be seen in the table (Table 5), the general interpretation of the effect of covariates did 

not change when compared to the previous model (Table 2). The value of log partial likelihood ratio test 
is G = 407.64, and the G statistic follows chi-square distribution with 7 degrees of freedom. Since the 
p-value for the test is less than 0.000, at least one of the coefficients in the model is significantly 
associated with survival time. All the estimated coefficients are significant at 0.05 level. The explained 
variation of the model measured R2 equals 0.541556 (SE = 0.024892). The greatest contribution to the 
explained variation is carried by covariates cla and qcr, followed by lnta, qcla, ta_turn, roa, cr. 

 
Figure 3: Goodness of Fit 

 
             (a) Model 1          (b) Model 2 

 
Source: author’s calculations 

 
In the figure above (Figure 3), we plot the Nelson-Aalen cumulative hazard estimator for Cox-

Snell residuals.  We can see some variability about the 45º, particularly in the right-hand tail. This is the 
reason of the reduced effective sample caused by prior failures and censoring. It is evident that the 
second model with quadratic forms fits better when compared to the first model.  

 
4. Conclusion 
  
 The paper was devoted to the analysis of corporate failures using the survival analysis. In this 
study, the survival analysis was carried out to estimate the survival and hazard functions of the Czech 
construction sector. The first chapter provided some introduction about the use of survival analysis in 
corporate failure prediction and explained the use of censored and uncensored data. In the next chapter, 
the attention was paid to a brief description of methodology. For the reason that some methods are very 
specific, you can find some relevant literature for more details and derivations. Finally, the application 
on a data sample of the Czech companies was carried out using Cox proportional hazards model. 
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Two models were estimated and the outputs are summarized in tables (Table 2, Table 5). Both 
models contain five covariates; and the second model includes quadratic terms of cla and cr in addition. 
The models suggest that the higher the return on assets, the coverage of long-term assets,  
the turnover of total assets and the current liquidity ratio, the lower the hazard of bankruptcy. The size 
of the company is another significantly important factor in the model, however with an opposite impact 
on the hazard. In conclusion, the model implies that larger companies face a higher probability to 
corporate failure. It is likely to be a specific aspect of the Czech construction sector and may be explained 
by the stage of industry life cycle, technological demands or other factors, such as suggested by Agarwal 
and Audretsch (2001). The possible explanation of the unusual result may be associated with a decrease 
in public investments and a decline in housing construction in the Czech Republic during the observed 
period, which is crucial primarily for large construction companies.  

Both models were verified to access the fit of the model. The results show that the consideration 
of quadratic forms increased the fit of the model. In conclusion, the survival analysis is a useful method 
for the analysis of censored and uncensored data. Suggestions for further research include the use of 
parametric models, which are more flexible and they can overcome the problems of relatively poor fit 
of the Cox model.   
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